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In this paper, the genetic algorithm (GA) method is used for the multi-objective

optimization of ring stiffened cylindrical shells. The objective functions seek the

maximum fundamental frequency and minimum structural weight of the shell

subjected to four constraints including the fundamental frequency, the structural

contains six design variables including the shell thickness, the number of stiffeners,

the width and height of stiffeners, the stiffeners eccentricity distribution order, and the

stiffeners spacing distribution order. The real coding scheme is used for representing the

solution string, while the generation number-based adaptive penalty function is applied

for penalizing infeasible solutions. In analytical solution, the Ritz method is applied and

the stiffeners are treated as discrete elements. Some examples of simply supported

cylindrical shells with nonuniform eccentricity distribution and nonuniform rings

spacing distribution are provided to demonstrate the optimality of the solution

obtained by the GA technique. The effects of objective weighting coefficients and

bounding values of the design variables on the optimum solution are studied for various

cases. The results show that the optimal solution can vary with the weighting

coefficients significantly. It is also found that extreme reduction and augmentation in

turn in the structural weight and fundamental frequency can be simultaneously

achieved by selecting suitable stiffeners’ geometrical parameters and distributions.

Furthermore, the bounding values of the design variables have great effects on the

optimum results.

& 2010 Published by Elsevier Ltd.
1. Introduction

Ring stiffened cylindrical shells are important configurations widely used in modern structures such as pressure vessels,
submarine hulls, aircrafts, and launch vehicles. Structural weight is one of the most important parameters for designers.
Most of these shells are required to operate in a dynamical environment. Therefore, it is very critical to investigate the
dynamic characteristics of these shells to develop a strategy for controlling their modal vibration on specific operating
conditions and determination of their structural integrity and fatigue life. The natural frequencies of vibration are of special
interest to aircraft and launch vehicle designers because of increasing use of sensitive electronic instruments, on-board
computers, and gyroscopes, which require isolation from the main structure vibrations. Similarly, buckling load is another
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important parameter in designing stiffened shells particularly under compression. Hence, the optimum design of these
structures is the objective for designers to achieve the minimum weight either with maximum natural frequencies or with
maximum buckling loads.

The optimization of the objective function may be carried out using both gradient-based and non-gradient-based
methods. The gradient methods are fast, but have some limitations such as the need for the continuity of the objective
function and a large probability of convergence to a local optimum. This means that the computation starts from a
single point narrowing the search domain, and the choice of starting point influences the convergence. In contrast, the
non-gradient-based optimization techniques do not need derivative evaluations and the optimization is only performed by
the objective function. The genetic algorithm (GA) belongs to these methods.

1.1. Stiffened shells

In the considerable literature on this subject, there are two main types of analyses depending upon whether the
stiffening rings are treated by averaging their properties over the surface of the shell or by considering them as discrete
elements. When the ring stiffeners of equal strength are closely and evenly spaced, the stiffened shell can be modeled as an
equivalent orthotropic shell, which is called the smearing method. However, as the stiffener spacing increases or the
wavelength of vibration becomes smaller than the stiffener spacing, the determination of dynamic characteristics of
the stiffened shell becomes inaccurate. Thus, for a more general model, the ring stiffeners have to be treated as discrete
elements. As long as modeling in this respect, it is advantageous to utilize the ring stiffeners with different properties such
as nonuniform eccentricity, nonuniform spacing, and varying material distributions.

The free vibration and buckling analyses of stiffened cylindrical shells have been investigated since the 1950s by a
number of researchers. Hopmann [1] investigated the free vibration of an orthogonally stiffened cylindrical shell with
simply supported ends, analytically and experimentally. The smearing method for stiffeners was used in the analytical
investigation. Mikulas and McElman [2] examined the free vibration of eccentrically stiffened simply supported cylindrical
shells by averaging the stiffeners properties over the surface of the shells. Egle and Sewall [3] and Mustafa and Ali [4]
extended this study to treat stiffeners as discrete elements. Wang et al. [5] and Tian et al. [6] employed the Ritz method for
solving the free vibration and buckling problems of cylindrical shells with varying ring stiffener distributions. Bagheri and
Jafari [7–9] analyzed the free vibration of simply supported ring stiffened cylindrical shells with nonuniform stiffeners
distributions analytically, numerically, and experimentally.

1.2. Genetic algorithm

GA is a well-known method for global optimization of complex systems. The initiation of GA can be traced back to the
1950s. However, to the authors’ best knowledge, the work done by Holland [10] at the University of Michigan led to GA.
Then, the method was extended by other researchers, e.g. Goldberg [11] and Gen and Cheng [12].

Since GA is a well-established optimization technique, only a brief description of its theory is given in this paper. The
interested readers are referred to the above-mentioned references for many practical and theoretical aspects of GA. DeJong
[13] studied the use of GA in a general function optimization. He showed that the ability of GA to learn from the history
and exploitation of the environment provides the basis of its effectiveness in the optimization. Recent years have
witnessed an exponential growth in the use of GA in a vast variety of sciences and engineering fields. In composite
cylindrical shells, the investigations by Callahan and Weeks [14], Nagendra et al. [15], Messager et al. [16], Park et al. [17],
Walker and Smith [18], and Adams et al. [19] for the optimization of layers layout to obtain the maximum strength and
minimum weight can be mentioned. However, the optimum design of stiffened cylindrical shells by the GA method has not
been studied yet. Only a few studies utilizing the gradient-based optimization methods reported by Patnaik and Sankaran
[20] and Rao and Reddy [21] are found.

The present contribution utilizes an analytical method based on GA for the multi-objective optimization of ring
stiffened cylindrical shells. In the analytical formulation, the Ritz method is applied and the stiffeners are treated as
discrete elements. In the GA technique, the maximization of the fundamental frequency and the minimization of the
structural weight are considered as the objective functions and four constraints including fundamental frequency,
structural weight, and axial and radial buckling loads are applied. Each chromosome of the population contained six design
variables and the real coding scheme is used. Furthermore, the adaptive penalty function is employed for penalizing the
infeasible solutions. Some examples of simply supported cylindrical shells with ring stiffeners illustrate the effectiveness of
the technique. The effects of the objective weighting coefficients and bounding values of the design variables on the
optimum results are investigated.

2. Analytical formulation

Consider a thin uniform cylindrical shell with the uniform thickness h, radius R, length L, mass density r, modulus of
elasticity E, Poisson’s ratio n, and shear modulus G=E/2(1+n), as displayed in Fig. 1. The shell is circumferentially stiffened
by N number of the rings, which may be placed either internally or externally. The ith ring stiffener has a rectangular cross



Fig. 1. A ring stiffened cylindrical shell with a nonuniform stiffeners distribution.
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section with constant width bri and depth dri, and is located at a distance aiL from one end of the shell. The spacing and
height of the rings may vary along the length of the shell. The material properties of each ring stiffener may differ from
those of other ones and also from the parent shell material properties. The ith stiffener’s properties are defined as mass
density rri, modulus of elasticity Eri, Poisson’s ratio nri, and shear modulus Gri. The cylindrical shell is subjected to an axis-
symmetric lateral pressure Pl and an end uniform axial pressure Px.

2.1. Shell energy

According to Sander’s [22] thin shell theory, the strain energy of stretching and bending of the aforementioned
cylindrical shell without stiffeners can be expressed as
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where u, v, and w stand for the displacements in the longitudinal, tangential, and radial directions, respectively; x and y
stand for the longitudinal and circumferential coordinates, respectively.

Neglecting the effect of rotary inertia (since the shell under discussion is assumed to be thin), the kinetic energy of a
cylindrical shell without the stiffeners can be expressed as
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2.2. Ring stiffener energy

In this research, the geometric characteristics and material properties of each ring may differ from those of other ones.
Also, the spacing and the eccentricity of rings may have nonuniform distributions.

The strain energy of the ith ring stiffener with the effects of stretching, biaxial bending and wrapping is given by
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The kinetic energy of the ith ring stiffener with the effects of triaxial translational inertia and rotary inertia about x and z

axes is given by
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where the second moments of areas Izri, Ixri, the cross sectional area Ari, and the torsional rigidity Jri are given by
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and the eccentricity of the ring stiffener can be defined as

eri ¼ 7
hþdri

2
, (6)

where the signs (+) and (�) represent the external and internal stiffening, respectively.
From geometrical considerations, the relationships between the displacements (uri, vri, wri) of the ith stiffener and the

displacements (u,v,w) of the shell at the position of the stiffener are given by
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Substituting Eqs. (5–7) into Eqs. (3,4), the ring stiffener energy can be expressed in terms of the middle surface
displacements of the shell.

2.3. External pressure energy

The potential energies of the axis-symmetric radial pressure Pr and the end uniform axial pressure Px are given by
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where e is a scalar indicator, which takes the value of 1 or 0 depending on whether there is an end axial pressure or not,
respectively.

Therefore, the energy functional of the ring stiffened cylindrical shell can be written as

F ¼U�Tþ
XN

i ¼ 1
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The following functions are adopted to separate the spatial variables x, y and the time variable t

uðx,y,tÞ ¼ uðxÞsinðnyþotÞ

vðx,y,tÞ ¼ vðxÞcosðnyþotÞ

wðx,y,tÞ ¼wðxÞsinðnyþotÞ, (10)

where n indicates the number of circumferential waves and o is the circular frequency of vibration.
For generality and convenience, the following nondimensional variables are defined as follows:
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2.4. Geometric boundary conditions

For simply supported cylindrical shells, four kinds of boundary conditions can be designated:

S1 : w¼ v¼ 0, S2 : w¼ 0, S3 : w¼ u¼ 0, S4 : w¼ v¼ u¼ 0: (12)

2.5. Ritz functions

In view of satisfying the foregoing geometric boundary conditions, the proposed Ritz functions for approximating the
displacements are as follows:
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Table 1
Powers of Gfor the Ritz functions.

Boundary condition S1 S2 S3 S4

Gu 0 0 1 1

Gv 1 0 0 1

Gw 1 1 1 1
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where the powers of G are listed in Table 1. The superscripts of G, i.e. 0 and 1, denote the cylindrical shell ends at x¼ 0
and x¼ 1, respectively.

These forms of the Ritz functions allow easy, exact differentiation and integration. In addition, the more the increase in
the number of polynomial sentences NS, the better the convergence to the exact solution can be achieved.

2.6. Equations of motion

Applying the Ritz method (the minimization of the nondimensional energy functional with respect to the Ritz functions
coefficients), equations of motion are derived as follows:
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Substituting Eq. (13) into Eq. (9) and then into Eq. (14) yields the following eigenvalue equation:
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where [K] and [M] are the stiffness and mass matrices of the cylindrical shell, [Kri] and [Mri] are corresponding matrices of
the ith ring stiffener, and [G] is related to the external pressure loading. Also, {C}={p1, y, pNS, q1, y, qNS, r1, y, rNS}T is the
column vector of the Ritz coefficients, and O and l are the nondimensional frequency parameter and the external pressure
parameter, respectively.

3. Optimization based on GA

GA is a search and optimization method, which mimics the processing of chromosomes in natural genetics. The
algorithm starts with an initial random configuration, which called a population with a fixed initial size or a number of
individuals. Each individual in that population is a string or a chromosome, and is defined by optimization variables. The
chromosome represents a possible solution to the optimization problem, and its length is dictated by the number of
optimization variables and their required precision. Also, each optimization variable has to be bounded by a minimum and
a maximum value.

Major components of GA are encoding scheme, fitness evaluation, parent selection, crossover, and mutation operators.
Moreover, elitism is a supplementary component in the GA procedure.

The encoding scheme is the first step to transform points from the parameter space into the bit string representations.
In this study, the real-coded scheme is used and individuals are coded as vectors of real numbers corresponding to the
design variables. There are no encoding and decoding operations involved.

In the second step, the fitness should be evaluated for each design in every generation since it depends on the objective
function value.

After evaluating the fitness of each member of the current population, a selection process for individuals to participate
in the creation of the next generation is in order. In this study, the tournament selection method is used, where a few
members of the population are selected randomly and their fitness values are compared. A number with higher fitness
advances to the next generation.

The crossover operator allows the genetic information contained in the best individuals to be combined to form
offspring. In this paper, a one-point crossover is applied.

After that the crossover process is performed, mutation process takes place. This step diversifies the population as
different areas of the parameters space that can be explored, and also prevents the solution from premature convergence.
Nonetheless, this would not occur very often, because GA will perform a random search in the real world.

After selection, crossover and mutation are applied to the initial population, a new population will be formed and the
generational counter is increased by one. In this new population, there is a chance that the best solution will be lost due to
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these genetic operations. Elitism is the method that copies the best chromosome (or a few of the best chromosomes) to a
new population and can raise the performance of GA rapidly, because it prevents losing the best found solution.

GA has been well suited to unconstrained optimizations, but most real-world engineering design problems involve
constrained optimizations. Traditionally, external penalty functions have been used to convert a constrained optimization
problem into an unconstrained problem for GA-based optimizations. This approach, somewhat, requires an arbitrary
selection of penalty draw-down coefficient. The performance of the approach largely depends on the penalty parameters
employed. In this respect, the adaptive penalty functions are preferred. The goal of an adaptive penalty function is to
change the value of the draw-down coefficient during the search, allowing exploration of infeasible regions to find the
optimal building blocks, while preserving the feasibility of the final solution.

4. Results and discussion

4.1. Multi-objective optimization problem

In this study, the multi-objective optimization of ring stiffened cylindrical shells is implemented. The fundamental
frequency and the structural weight are the objective functions and four constraints including the fundamental frequency,
the structural weight, and the axial and radial critical buckling loads are considered. At first, a cylindrical shell without
stiffeners, with thickness h0, radius R and length L with simply supported boundary conditions (S1�S1) is chosen. The
physical dimensions and properties of the shell model are given in Table 2.

The weight, the fundamental frequency, and the axial and radial buckling loads of the shell are W0, o0, P0axial, and P0rad,
respectively. The shell is stiffened with nonuniformly spaced ring stiffeners. The new weight, the new fundamental
frequency, and the new axial and radial buckling loads are W, O, Paxial, and Prad, respectively. The objectives are maximizing
the fundamental frequency and minimizing the structural weight without reduction in the fundamental frequency and
critical buckling load and an increase in the structural weight, with respect to the original unstiffened shell. As a result, the
fitness, the objectives, the constraints, and the adaptive penalty functions namely f, j, Gk, and Pk are defined as follows:
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Table 2
Geometrical and material properties of the cylindrical shell.

Characteristics values

Shell radius R(mm) 82.5

Shell thickness h0(mm) 2.5

Shell length L(mm) 247.5

Modulus of elasticity E (GPa) 200

Mass density r (kg/m3) 7823

Poisson’s ratio n 0.29
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where dp stands for a constant denoting the penalty weighting coefficient, and do and dw are the objectives weighting
coefficients representing the relative importance of the objective functions, respectively. Besides, gn is the generation
number and C is the vector of the design variables, where C={h,N,b,dmax,g,b}. Moreover, g and b are in turn the eccentricity
and spacing distribution orders of the ring stiffeners, respectively.

The location and the depth of the rings corresponding to g and b values are derived from Eq. (22). Some cases of the
nonuniform stiffeners distribution are shown in Fig. 2.

xri ¼
1

2

2i

Nþ1

� �b

dri ¼ dmax � 2xrið Þ
g� for i¼ 1. . .N=2: (22)

4.2. Case studies

In this section, the effects of the objective functions weighting coefficients and the bounding values of the design
variables on the optimum solutions are discussed. Each design variable is bounded by the minimum and maximum values.
To demonstrate the effects of bounding values of the design variables on the optimum solutions, five case studies are
performed, namely Cases I–V. The cases have different bounding values of design variables, which are presented in Table 4.

A flowchart of the general procedure, which is used for GA, is outlined in Fig. 3. For this flowchart, a computer code is
developed in MATLAB software. In this study, the tournament selection method is used and a few members of the
population are selected randomly and their fitness values are compared. A number with higher fitness advances to the next
generation. The advantage of this method is owing to having less computational effort in comparison to other methods.

The GA control parameters contain the population size (Ps=40), the probability of the crossover (Pc=0.7) with the one-
point crossover, and the probability of the mutation (Pm=0.1) with the linear deterministic rule decrement. The
probability of the mutation is usually less than 0.01. However, the great value selection for Pm with the linear
deterministic decrement allows exploring and exploiting of searching space to find the optimum solution and preventing
convergence to local optimum. In this study, uniform and creep mutations are employed. For some initial generations, only
uniform mutation can take place, but for the remaining generations, if the maximum fitness value is not changed for the
long periods of iterations, both uniform and creep mutations will be applied.

Generally, the population size (Ps) ranges from 10 to 100 and the probability of the crossover (Pc) ranges from 0.6 to 0.9
relative to the optimization problem and the number of variables. Selecting the lower values for Ps may lead to
convergence to the local optimum. However, selecting the high values causes the lower rate of convergence of the
optimization process. In contrast, selecting the lower values for Pc causes the lower rate of convergence of the optimization
process. However, selecting the high values may yield convergence to the local optimum.

Moreover, the elitism and adaptive penalty function are used for better performance of GA. It should be noted that the
adaptive penalty function utilizes the generation number-based strategy, which causes the value of the draw-down
coefficient to rise with a successive generation. All of the genetic operations are repeated about 200 iterations to obtain a
converged solution.

The variations of the objectives values (jo, jw) for the different weighting coefficients (do, dw) for Case I are shown in
Table 3. Moreover, plots of the obtained optimal objectives are illustrated in Fig. 4. For dobdw, the increase of the
Fig. 2. The nonuniform distributions of the rings spacing and eccentricity.



Table 3
The optimal objective values versus the weighting coefficients.

Weighting coefficients Objective values

do dw jo jw

0.00 1.00 1.1290 1.3460

0.05 0.95 1.1299 1.3452

0.10 0.90 1.1784 1.3426

0.15 0.85 1.1919 1.3372

0.20 0.80 1.1922 1.3369

0.25 0.75 1.1968 1.3359

0.30 0.70 1.2039 1.3327

0.35 0.65 1.2071 1.3306

0.40 0.60 1.2349 1.2976

0.45 0.55 1.2407 1.2908

0.50 0.50 1.2480 1.2811

0.55 0.45 1.3603 1.1172

0.60 0.40 1.3792 1.0879

0.65 0.35 1.3922 1.0670

0.70 0.30 1.4258 1.0148

0.75 0.25 1.4308 1.0072

0.80 0.20 1.4317 1.0060

0.85 0.15 1.4326 1.0049

0.90 0.10 1.4332 1.0032

0.95 0.05 1.4337 1.0023

1.00 0.00 1.4339 1.0002

Fig. 3. Flowchart of the proposed GA.
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fundamental frequency is more important than the decrease of the structural weight. Therefore, the significant increment
of the fundamental frequency can be seen without a significant decrement in the structural weight. Conversely, for
do5dw, reducing the structural weight is more important than augmenting the fundamental frequency. Therefore,
a remarkable drop in the structural weight can be observed with a few increments in the fundamental frequency.
However, for the values of the weighting coefficients ranging from 0.4 to 0.6, severe changes in the objectives values can
be viewed.

The convergence of the fitness function for Cases I–V corresponding to dw/do=1 is shown in Fig. 5(a, b). The optimum
values of the design variables obtained by the GA technique are presented in Table 4. Moreover, the corresponding
objectives and constraints functions values are given in Table 5.

It should be noted that significant weight reductions of about 21.9%, 17.2%, 13.6%, 12.4%, and 7.5% are obtained for Cases
I–V, respectively. In addition, the fundamental frequency increments about 24.8%, 17.6%, 13.2%, 13.4%, and 33.5% for these
cases can be observed. Also, Fig. 6(a,b) illustrates a comparison of the natural frequencies of the ring stiffened cylindrical
shell with those of the unstiffened shell for the foregoing cases for m=1.



Fig. 4. The effects of the weighting coefficients ratio on the optimum results for Case I.

Fig. 5. Convergence of the fitness function for Cases I–V, dw/do=1. (a) Case I (— the best run, - - - - average 20 run). (b) — Case V, y Case II, - - - - Case III,

- - - Case IV.

Table 4
The bounding and optimum values of the design variables for Cases I–V.

Case no. Variable h N b (mm) dmax (mm) g b

I Bounding values Min h0/2 1 2 2 0 0.1

Max h0 30 10 10 2 2

Optimum values 1.5657 6 2 7.5391 0 1.7670

II Bounding values Min h0/2 1 4 4 0 0.1

Max h0 30 8 8 2 2

Optimum values 1.4831 6 4 5.7931 0.0003 1.7422

III Bounding values Min h0/2 4 2 2 0 0.1

Max h0 40 5 5 2 2

Optimum values 1.5486 6 4.8486 5 0 1.5064

IV Bounding values Min h0/2 8 3 3 0 0.1

Max h0 40 5 5 2 2

Optimum values 1.6848 8 3 5 0 1.4144

V Bounding values Min h0/2 10 2 2 0 0.1

Max h0 40 10 10 2 2

Optimum values 1.9171 10 2 8.6297 0.5095 2
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Table 5

The objective and constraints functions values for Cases I–V (do=dw=0.5).

Cases Objective functions Constraints

O
o0

� �
W
W0

� ��1 O
o0
�1

� �
1� W

W0

� �
Paxial
P0axial
�1

� �
Prad
P0rad
�1

� �

I 1.2480 1.2811 0.2480 0.2194 0.0009 0.8949

II 1.1765 1.2081 0.1765 0.1723 0.0007 0.7351

III 1.1323 1.1576 0.1323 0.1362 0.0001 0.6811

IV 1.1341 1.1419 0.1341 0.1243 0.0009 0.6712

V 1.3354 1.0816 0.3354 0.0755 0.0010 1.4443

Fig. 6. The effect of the ring stiffeners on the natural frequencies for m=1. (a) , Case 1, Case V, un-stiffened; (b) Case II, Case III,

Case IV, un-stiffened.
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For Cases I and V, the fundamental frequency occurs at n=2 and m=1. However, for Cases II, III and IV, it takes place at
n=3 and m=1. Note that integer m refers to the number of longitudinal half waves and integer n refers to the
circumferential wavenumber. It should be noted that the fundamental frequency of the unstiffened shell occurs at n=3 and
m=1. Although the maximization of the fundamental frequency and the minimization of the structural weight are the main
objectives of the present study, fortunately, the significant increase in the radial buckling loads can be viewed (see Table 5).
Moreover, a small augmentation in the axial buckling load is observable. From Fig. 6(a,b), it is seen that the natural
frequencies corresponding to m=1 and n=4–6 are also increased about 55% to 135%, respectively. On the other hand, small
decrements in the natural frequencies for n=1 and 2 are observed.

5. Conclusions

The GA method is applied to the multi-objective optimization problem of ring stiffened cylindrical shells. The optimum
design is analytically obtained by employing the maximum fundamental frequency and the minimum structural weight as
the objective functions. Moreover, four constraints including the fundamental frequency, the structural weight, and the
axial and radial general buckling loads are considered. The real coding scheme is used for representing the solution string,
and the generation number-based adaptive penalty function is applied for penalizing the infeasible solutions. In the
analytical solution, the Ritz method is applied and the stiffeners are treated as discrete elements. The effects of the
weighting coefficients of the objective functions and the bounding values of the design variables on the optimum solution
are studied for various cases.

The results demonstrate that changing the weighting coefficients of the objectives lead to different optimum solutions.
Moreover, the bounding values of the design variables have considerable effects on the optimum results. Some variables
are sensitive to the minimum bounding values while the others are sensitive to the maximum bounding values. It can be
concluded that stiffening a cylindrical shell yields lower structural weight, and the higher natural frequencies and buckling
loads. In addition, it is found that the distribution of the stiffeners plays a key role on the magnitudes of the natural
frequencies and buckling loads. For instance, the improvement in the natural frequencies and buckling loads for the
uniform stiffeners distribution is not as significant as that for the nonuniform distributions.
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